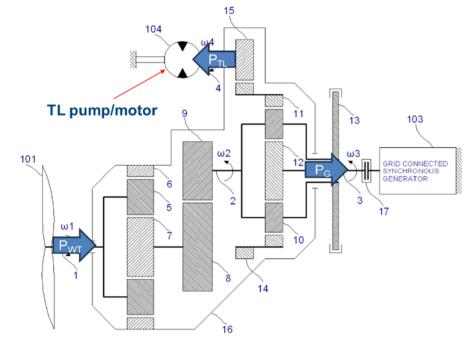


SYNCWIND'S TYPE 5 WIND TURBINE POWER-TRAIN: A GRID-FORMING ALTERNATIVE TO INVERTER-BASED RESOURCES

Geoff Henderson

Sync Wind Power Ltd,

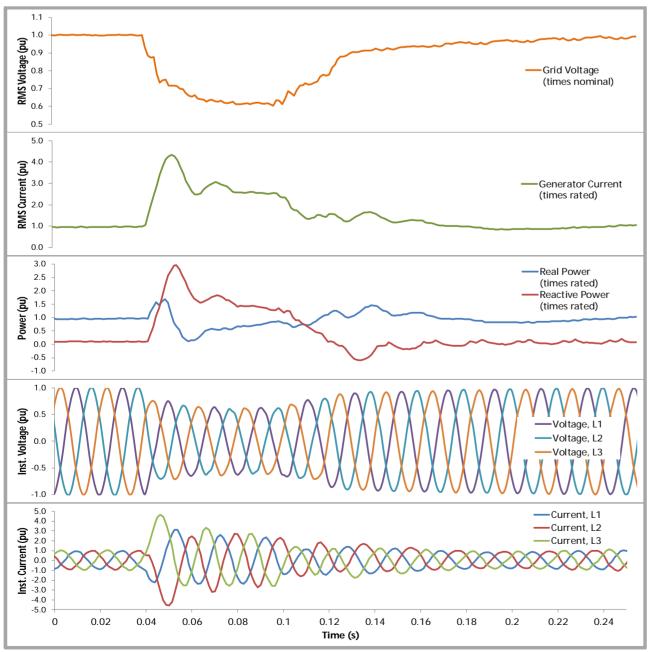
A New Zealand company, based in Italy


Abstract

Degradation of system strength because of inverter-based resources (IBRs) is a major concern facing the zero-carbon transition. Blackouts like the one in Iberia on April 28 highlight this. Transmission system operators around the world are requiring new investments in synchronous compensators. This supports the view, shared by SyncWind, that synchronous machines cannot be totally replaced. But new investments in synchronous compensators are not the economic way forward.

The SyncWind Type 5 power-train is a cost-effective and proven way to provide mechanical variable speed, thus enabling synchronous wind power generation, reactive power, voltage control and system strength. It has been running for nearly 20 years and more than 1500 turbine-years track record in a 46 MW wind farm in New Zealand. The next demonstration has been designed as a low-cost modification of a 2.5 MW mainstream 3-bladed turbine in Europe, America, or Asia.

What it is


A patented torque limiting gearbox (TLG) - which provides hydrostatic torque reaction and low variable-speed (LVS) capability:

TL pump/motor Controllable relief valve gives subsecond control of drive-train torque

What it does

- Protects the gearbox & generator from torque transients
- Provides system strength (massive fault current and some synchronous inertia) to support the grid during faults, not merely ride-through, for example September 2012 (NZ).

Why it has lower LCOE than a Type 3 turbine

- No inverters
- Lighter gearbox and generator
- TLG-LVS system handles max 5% of turbine power

How it is controlled

Controlled Parameter	Actuator	Type of control
1. Wind turbine speed a) LVS mode (60-100% Ns) b) Between modes (100-101%) c) TLG mode (101-105% Ns)	LVS pump flow None Blade pitching	PI v1 None PI v2
2. Wind turbine torquea) LVS modeb) Between modesc) TLG mode	None None TL relief valve	None None Force balance
 3. Wind turbine power a) LVS mode b) Between modes c) TLG mode d) Operating reserves e) Ramping performance 	None None See 1c) & 2c) TL relief valve TL relief valve	None None See 1c) & 2c) Set point step Set point step
4. Grid frequency a) synchronous inertial response	Electromagnetism	Grid connection
b) fast frequency response	TL relief valve	Set point step
5. TL pump/motor speed (rpm) a) LVS mode b) Between modes c) TLG mode	LVS pump flow None Blade pitching	PI v1 None PI v2
6. Voltage (V) a) LVRT and FPFAPR b) steady pf (cos c) steady VAR export/import d) terminal-voltage and droop	Electromagnetism AVR AVR AVR	None Set point step Set point step Set point step

The zero-carbon future needs synchronous wind.

Email: Geoff@windflow.co.nz

Mobile/WhatsApp: +39 338 448 8604

Website: www.syncwind.org